- Home
- Standard 11
- Mathematics
13.Statistics
medium
If the variance of the frequency distribution is $160$ , then the value of $\mathrm{c} \in \mathrm{N}$ is
$X$ | $c$ | $2c$ | $3c$ | $4c$ | $5c$ | $6c$ |
$f$ | $2$ | $1$ | $1$ | $1$ | $1$ | $1$ |
A
$5$
B
$8$
C
$7$
D
$6$
(JEE MAIN-2024)
Solution
$x$ | $C$ | $2C$ | $3C$ | $4C$ | $5C$ | $6C$ |
$f$ | $2$ | $1$ | $1$ | $1$ | $1$ | $1$ |
$\bar{x}=\frac{(2+2+3+4+5+6) C}{7}=\frac{22 C}{7}$
$ \operatorname{Var}(\mathrm{x})=\frac{\mathrm{c}^2\left(2+2^2+3^2+4^2+5^2+6^2\right)}{7} $
$ -\left(\frac{22 c}{7}\right)^2 $
$ =\frac{92 c^2}{7}-\mathrm{c}^2 \times \frac{484}{49} $
$ =\frac{(644-484) c^2}{49}=\frac{160 c^2}{49} $
$ 160=\frac{160 \times c^2}{49} \Rightarrow c=7$
Standard 11
Mathematics
Similar Questions
Let the mean and variance of the frequency distribution
$\mathrm{x}$ | $\mathrm{x}_{1}=2$ | $\mathrm{x}_{2}=6$ | $\mathrm{x}_{3}=8$ | $\mathrm{x}_{4}=9$ |
$\mathrm{f}$ | $4$ | $4$ | $\alpha$ | $\beta$ |
be $6$ and $6.8$ respectively. If $x_{3}$ is changed from $8$ to $7 ,$ then the mean for the new data will be:
hard