If the variance of the frequency distribution is $160$ , then the value of $\mathrm{c} \in \mathrm{N}$ is
$X$ | $c$ | $2c$ | $3c$ | $4c$ | $5c$ | $6c$ |
$f$ | $2$ | $1$ | $1$ | $1$ | $1$ | $1$ |
$5$
$8$
$7$
$6$
Calculate mean, variance and standard deviation for the following distribution.
Classes | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ | $80-90$ | $90-100$ |
${f_i}$ | $3$ | $7$ | $12$ | $15$ | $8$ | $3$ | $2$ |
If $\sum \limits_{i=1}^{n}\left(x_{i}-a\right)=n$ and $\sum \limits_{i=1}^{n}\left(x_{i}-a\right)^{2}=n a,(n, a>1)$ then the standard deviation of $n$ observations $x _{1}, x _{2}, \ldots, x _{ n }$ is
Let $9 < x_1 < x_2 < \ldots < x_7$ be in an $A.P.$ with common difference $d$. If the standard deviation of $x_1, x_2 \ldots$, $x _7$ is $4$ and the mean is $\overline{ x }$, then $\overline{ x }+ x _6$ is equal to:
Find the mean and variance for the first $10$ multiples of $3$
The mean and standard deviation of marks obtained by $50$ students of a class in three subjects, Mathematics, Physics and Chemistry are given below:
Subject | Mathematics | Physics | Chemistty |
Mean | $42$ | $32$ | $40.9$ |
Standard deviation | $12$ | $15$ | $20$ |
Which of the three subjects shows the highest variability in marks and which shows the lowest?