If the variance of the frequency distribution is $160$ , then the value of $\mathrm{c} \in \mathrm{N}$ is
$X$ | $c$ | $2c$ | $3c$ | $4c$ | $5c$ | $6c$ |
$f$ | $2$ | $1$ | $1$ | $1$ | $1$ | $1$ |
$5$
$8$
$7$
$6$
The variance of $10$ observations is $16$. If each observation is doubled, then standard deviation of new data will be -
Let $n \geq 3$. A list of numbers $x_1, x, \ldots, x_n$ has mean $\mu$ and standard deviation $\sigma$. A new list of numbers $y_1, y_2, \ldots, y_n$ is made as follows $y_1=\frac{x_1+x_2}{2}, y_2=\frac{x_1+x_2}{2}$ and $y_j=x_j$ for $j=3,4, \ldots, n$.
The mean and the standard deviation of the new list are $\hat{\mu}$ and $\hat{\sigma}$. Then, which of the following is necessarily true?
Determine mean and standard deviation of first n terms of an $A.P.$ whose first term is a and common difference is d.
Let in a series of $2 n$ observations, half of them are equal to $a$ and remaining half are equal to $-a.$ Also by adding a constant $b$ in each of these observations, the mean and standard deviation of new set become $5$ and $20 ,$ respectively. Then the value of $a^{2}+b^{2}$ is equal to ....... .
In an experiment with $15$ observations on $x$, the following results were available $\sum {x^2} = 2830$, $\sum x = 170$. On observation that was $20$ was found to be wrong and was replaced by the correct value $30$. Then the corrected variance is..