The modulus of elasticity is dimensionally equivalent to

  • A

    Surface tension

  • B

    Stress

  • C

    Strain

  • D

    None of these

Similar Questions

A steel rod has a radius $10 \,mm$ and a length of $1.0 \,m$. A force stretches it along its length and produces a strain of $0.32 \%$. Young's modulus of the steel is $2.0 \times 10^{11} \,Nm ^{-2}$. What is the magnitude of the force stretching the rod is ........ $kN$

Four uniform wires of the same material are stretched by the same force. The dimensions of wire are as given below. The one which has the minimum elongation has

A steel wire can sustain $100\,kg$ weight without breaking. If the wire is cut into two equal parts, each part can sustain a weight of ......... $kg$

  • [AIEEE 2012]

Under the same load, wire $A$ having length $5.0\,m$ and cross section $2.5 \times 10^{-5}\,m ^2$ stretches uniformly by the same amount as another wire $B$ of length $6.0\,m$ and a cross section of $3.0 \times 10^{-5}\,m ^2$ stretches. The ratio of the Young's modulus of wire $A$ to that of wire $B$ will be

  • [JEE MAIN 2023]

A steel wire of length $4.7\; m$ and cross-sectional area $3.0 \times 10^{-5}\; m ^{2}$ stretches by the same amount as a copper wire of length $3.5\; m$ and cross-sectional area of $4.0 \times 10^{-5} \;m ^{2}$ under a given load. What is the ratio of the Young's modulus of steel to that of copper?