A wire of length $L$ and radius $r$ is clamped at one end. If its other end is pulled by a force $F$, its length increases by $l$. If the radius of the wire and the applied force both are reduced to half of their original values keeping original length constant, the increase in length will become.
$3$ times
$3 / 2$ times
$4$ times
$2$ times
Increase in length of a wire is $1\, mm$ when suspended by a weight. If the same weight is suspended on a wire of double its length and double its radius, the increase in length will be ........ $mm$
A wire elongates by $l$ $mm$ when a load $W$ is hanged from it. If the wire goes over a pulley and two weights $W$ each are hung at the two ends, the elongation of the wire will be (in $mm$)
$(a)$ A steel wire of mass $\mu $ per unit length with a circular cross section has a radius of $0.1\,cm$. The wire is of length $10\,m$ when measured lying horizontal and hangs from a hook on the wall. A mass of $25\, kg$ is hung from the free end of the wire. Assuming the wire to be uniform an lateral strains $< \,<$ longitudinal strains find the extension in the length of the wire. The density of steel is $7860\, kgm^{-3}$ and Young’s modulus $=2 \times 10^{11}\,Nm^{-2}$.
$(b)$ If the yield strength of steel is $2.5 \times 10^8\,Nm^{-2}$, what is the maximum weight that can be hung at the lower end of the wire ?
The area of cross section of a steel wire $(Y = 2.0 \times {10^{11}}N/{m^2})$ is $0.1\;c{m^2}$. The force required to double its length will be
The length of metallic wire is $l$. The tension in the wire is $T_1$ for length $l_1$ and tension in the wire is $T_2$ for length $l_2$. Find the original length.