A wire of length $L$ and radius $r$ is clamped at one end. If its other end is pulled by a force $F$, its length increases by $l$. If the radius of the wire and the applied force both are reduced to half of their original values keeping original length constant, the increase in length will become.

  • [JEE MAIN 2024]
  • A

    $3$ times

  • B

     $3 / 2$ times

  • C

     $4$ times

  • D

    $2$ times

Similar Questions

Under the same load, wire $A$ having length $5.0\,m$ and cross section $2.5 \times 10^{-5}\,m ^2$ stretches uniformly by the same amount as another wire $B$ of length $6.0\,m$ and a cross section of $3.0 \times 10^{-5}\,m ^2$ stretches. The ratio of the Young's modulus of wire $A$ to that of wire $B$ will be

  • [JEE MAIN 2023]

A steel rod of length $1\,m$ and area of cross section $1\,cm^2$ is heated from $0\,^oC$ to $200\,^oC$ without being allowed to extend or bend. Find the tension produced in the rod $(Y = 2.0 \times 10^{11}\,Nm^{-2}$,  $\alpha = 10^{-5} C^{-1})$ 

The modulus of elasticity is dimensionally equivalent to

The diameter of a brass rod is 4 mm and Young's modulus of brass is $9 \times {10^{10}}\,N/{m^2}$. The force required to stretch by $0.1\%$ of its length is

A rubber cord catapult has cross-sectional area $25\,m{m^2}$ and initial length of rubber cord is $10\,cm.$ It is stretched to $5\,cm.$ and then released to project a missile of mass $5gm.$ Taking ${Y_{rubber}} = 5 \times {10^8}N/{m^2}$ velocity of projected missile is ......... $ms^{-1}$