$6.28$ સેમી. લાંબા રેસાની લંબાઈનું સૌથી યોક્કસ અવલોકન ....... $cm$ છે?
$6$
$6.5$
$5.99$
$6.0$
ભૌતિકરાશિ $X$ એ માપી શકાય તેવી બીજી રાશિઓ $a,\, b,\, c$ અને $d$ સાથે સંબંધ ધરાવે છે. $X = a^2b^3c^{\frac {5}{2}}d^{-2}$ અને $a,\,b,\,c ,\,d$ તેના માપનમાં પ્રતિશત ત્રુટિ અનુક્રમે $1\,\%$, $2\,\%$, $3\,\%$ અને $4\,\%$ છે. તો $X$ માં ઉદભવતી પ્રતિશત ત્રુટિ ગણો. આ રીતે ગણતાં $X$ નું મૂલ્ય $2.763$ મળે છે તો આ પરિણામને યોગ્ય સાર્થક અંક સુધી round off કરો.
વિદ્યુત પરિપથમાં ઉત્પન્ન થતી ઉષ્માનો જથ્થો વિદ્યુત પ્રવાહ $(I)$, અવરોધ $(R)$ અને સમય $(t)$ પર આધાર રાખે છે. જો ઉપરની ભૌતિક રાશિઓના અનુક્રમે $2\%\,, 1\%$ અને $1\%$ ની ત્રુટિઓ મળે, તો ઉત્પન્ન થતી કુલ ઉષ્મામાં મહત્તમ શક્ય ત્રુટિ કેટલા .............. $\%$ હશે ?
દળના માપનમાં અને ઝડપના માપનમાં પ્રતિશત ત્રુટિ અનુક્રમે $3\%$ અને $2\%$ ની હોય,તો ગતિઊર્જામાં મહતમ પ્રતિશત ત્રુટિ ......... $\%$ થશે.
એક ભૌતિકરાશિ નો માપન યોગ્ય ચાર રાશિઓ $a, b, c$ અને $d$ સાથેનો સંબંધ આ મુજબ છે. $P=\frac{a^{2} b^{2}}{(\sqrt{c} d)}$, $a, b, c$ અને $D$ માં પ્રતિશત ત્રુટિ અનુક્રમે $1 \%, 3 \%, 4 \%$ અને $2 \%$ છે, તો $P$ માં પ્રતિશત ત્રુટિ શોધો. જો ઉપર્યુક્ત સંબંધનો ઉપયોગ કરીને ગણતરી કરતાં $P$ નું મૂલ્ય $3.763$ મળતું હોય, તો તમે આ પરિણામને કયા મૂલ્ય સુધી $Round \,off$ કરશો ?
બે રાશિના મૂલ્યો સાધનથી ચોકચાઈ પૂર્વક માપતા $A = 2.5\,m{s^{ - 1}} \pm 0.5\,m{s^{ - 1}}$, $B = 0.10\,s \pm 0.01\,s$ મળે છે. તો $AB$ નું માપન કેટલું થાય?