The negation of the compound proposition $p \vee (\sim p \vee q)$ is

  • A

    $(p\; \wedge \sim q)\; \wedge \sim p$

  • B

    $(p\; \wedge \sim q)\; \vee \sim p$

  • C

    $(p\; \vee \sim q)\; \vee \sim p$

  • D

    None of these

Similar Questions

Which Venn diagram represent the truth of the statement“No policeman is a thief”

The statement $p \rightarrow  (q \rightarrow p)$  is equivalent to

  • [AIEEE 2008]

Statement $\quad(P \Rightarrow Q) \wedge(R \Rightarrow Q)$ is logically equivalent to

  • [JEE MAIN 2023]

The propositions $(p \Rightarrow \;\sim p) \wedge (\sim p \Rightarrow p)$ is a

The negation of the Boolean expression $p \vee(\sim p \wedge q )$ is equivalent to

  • [JEE MAIN 2020]