The negation of the compound proposition $p \vee (\sim p \vee q)$ is
$(p\; \wedge \sim q)\; \wedge \sim p$
$(p\; \wedge \sim q)\; \vee \sim p$
$(p\; \vee \sim q)\; \vee \sim p$
None of these
Which Venn diagram represent the truth of the statement“No policeman is a thief”
The statement $p \rightarrow (q \rightarrow p)$ is equivalent to
Statement $\quad(P \Rightarrow Q) \wedge(R \Rightarrow Q)$ is logically equivalent to
The propositions $(p \Rightarrow \;\sim p) \wedge (\sim p \Rightarrow p)$ is a
The negation of the Boolean expression $p \vee(\sim p \wedge q )$ is equivalent to