The negation of the expression $q \vee((\sim q) \wedge p)$ is equivalent to

  • [JEE MAIN 2023]
  • A

    $(\sim p ) \wedge(\sim q)$

  • B

    $p \wedge(\sim q )$

  • C

    $(\sim p ) \vee(\sim q)$

  • D

    $(\sim p ) \vee q$

Similar Questions

Which of the following Boolean expressions is not a tautology ?

  • [JEE MAIN 2021]

If $\left( {p \wedge  \sim q} \right) \wedge \left( {p \wedge r} \right) \to  \sim p \vee q$ is false, then the truth values of $p, q$ and $r$ are respectively

  • [JEE MAIN 2018]

The false statement in the following is

Statement $-1 :$ $\sim (p \leftrightarrow \sim q)$ is equivalent to $p\leftrightarrow q $

Statement $-2 :$ $\sim (p \leftrightarrow \sim q)$ s a tautology

  • [AIEEE 2009]

Which of the following is the negation of the statement "for all $M\,>\,0$, there exists $x \in S$ such that $\mathrm{x} \geq \mathrm{M}^{\prime \prime} ?$

  • [JEE MAIN 2021]