The negation of the expression $q \vee((\sim q) \wedge p)$ is equivalent to
$(\sim p ) \wedge(\sim q)$
$p \wedge(\sim q )$
$(\sim p ) \vee(\sim q)$
$(\sim p ) \vee q$
Which of the following Boolean expressions is not a tautology ?
If $\left( {p \wedge \sim q} \right) \wedge \left( {p \wedge r} \right) \to \sim p \vee q$ is false, then the truth values of $p, q$ and $r$ are respectively
The false statement in the following is
Statement $-1 :$ $\sim (p \leftrightarrow \sim q)$ is equivalent to $p\leftrightarrow q $
Statement $-2 :$ $\sim (p \leftrightarrow \sim q)$ s a tautology
Which of the following is the negation of the statement "for all $M\,>\,0$, there exists $x \in S$ such that $\mathrm{x} \geq \mathrm{M}^{\prime \prime} ?$