$\left(p^{\wedge} r\right) \Leftrightarrow\left(p^{\wedge}(\sim q)\right)$ is equivalent to $(\sim p)$ when $r$ is.
$p$
$\sim\,p$
$q$
$\sim\,q$
Negation of the compound proposition : If the examination is difficult, then I shall pass if I study hard
The statement $(p \Rightarrow q) \vee(p \Rightarrow r)$ is NOT equivalent to.
If the truth value of the statement $p \to \left( { \sim q \vee r} \right)$ is false $(F)$, then the truth values of the statement $p, q, r$ are respectively
Let $p$ and $q$ be two Statements. Amongst the following, the Statement that is equivalent to $p \to q$ is
The statement $\sim(p\leftrightarrow \sim q)$ is :