Which of the following statement is a tautology?
$\left[ {\left\{ {p \wedge \left( {\left( {q \vee t} \right) \wedge p} \right)} \right\} \to \left\{ {\left( {q \vee r} \right) \wedge \left( {p \vee t} \right)} \right\}} \right] \leftrightarrow \left[ { \sim \left( {q \vee r} \right) \to \sim p} \right]$
$\left\{ {p \wedge \left( {\left( {q \vee t} \right) \wedge p} \right)} \right\} \leftrightarrow \left[ {\left( {q \vee r} \right) \to p} \right]$
$\left\{ {p \wedge \left( {\left( {q \vee t} \right) \wedge p} \right)} \right\} \leftrightarrow \left[ {q \wedge r \wedge p} \right]$
$\left\{ {p \wedge \left( {\left( {q \vee t} \right) \wedge p} \right)} \right\} \leftrightarrow t$ (where $t$ denotes tautology)
If the truth value of the statement $p \to \left( { \sim q \vee r} \right)$ is false $(F)$, then the truth values of the statement $p, q, r$ are respectively
The number of values of $r \in\{p, q, \sim p , \sim q \}$ for which $((p \wedge q) \Rightarrow(r \vee q)) \wedge((p \wedge r) \Rightarrow q)$ is a tautology, is:
The negation of the statement $(( A \wedge( B \vee C )) \Rightarrow( A \vee B )) \Rightarrow A$ is
If $P$ and $Q$ are two statements, then which of the following compound statement is a tautology?
Which of the following is the inverse of the proposition : “If a number is a prime then it is odd.”