- Home
- Standard 11
- Mathematics
The normal at a point $P$ on the ellipse $x^2+4 y^2=16$ meets the $x$-axis at $Q$. If $M$ is the mid point of the line segment $P Q$, then the locus of $M$ intersects the latus rectums of the given ellipse at the points
$\left( \pm \frac{3 \sqrt{5}}{2}, \pm \frac{2}{7}\right)$
$\left( \pm \frac{3 \sqrt{5}}{2}, \pm \frac{\sqrt{19}}{4}\right)$
$\left( \pm 2 \sqrt{3}, \pm \frac{1}{7}\right)$
$\left( \pm 2 \sqrt{3}, \pm \frac{4 \sqrt{3}}{7}\right)$
Solution
Given Ellipse $\frac{x^2}{16}+\frac{y^2}{4}=1$
$e=\sqrt{1-\frac{b^2}{a^2}}=\frac{\sqrt{3}}{2}$
$\because P$ is a point on the ellipse
So, $P =(4 \cos \theta, 2 \sin \theta)$
Equation of normal to the ellipse $\frac{x^2}{16}+\frac{y^2}{4}=1$ at point $\left( x _1, y _1\right)=(4 \cos \theta, 2 \sin \theta)$ is given by
$a ^2 y _1\left( x – x _1\right)= b ^2 x _1\left( y – y _1\right)$
$\Rightarrow 16 \times 2 \sin \theta( x -4 \cos \theta)=4 \times 4 \cos \theta( y -2 \sin \theta)$
$\Rightarrow 2 x \sin \theta-8 \sin \theta \cos \theta= y \cos \theta-2 \sin \theta \cos \theta)$
$\Rightarrow 2 x \sin \theta= y \cos \theta+6 \sin \theta \cos \theta$
$\Rightarrow \frac{2 x }{\cos \theta}=\frac{ y }{\sin \theta}+6$
$\Rightarrow 2 x \sec \theta- y \operatorname{cosec} \theta=6$
It meet the $x$-axis at $Q(3 \cos \theta, 0)$
$\therefore M =\left(\frac{7}{2} \cos \theta, \sin \theta\right)=( x , y )$
Locus of $M$ is
$\frac{x^2}{\left(\frac{7}{2}\right)^2}+\frac{y^2}{1}=1$
Latus rectum of the given ellipse is
$x = \pm ae = \pm \sqrt{16-4}= \pm 2 \sqrt{3}$
So locus of $M$ meets the latus rectum at points for which
$y ^2=1-\frac{12 \times 4}{49}=\frac{1}{49} \Rightarrow y = \pm \frac{1}{7}$
Hence, the required point is $\left( \pm 2 \sqrt{3}, \pm \frac{1}{7}\right)$.