Let $P \left(\frac{2 \sqrt{3}}{\sqrt{7}}, \frac{6}{\sqrt{7}}\right), Q , R$ and $S$ be four points on the ellipse $9 x^2+4 y^2=36$. Let $P Q$ and $RS$ be mutually perpendicular and pass through the origin. If $\frac{1}{( PQ )^2}+\frac{1}{( RS )^2}=\frac{ p }{ q }$, where $p$ and $q$ are coprime, then $p+q$ is equal to $.........$.
$143$
$137$
$157$
$147$
If the length of the major axis of an ellipse is three times the length of its minor axis, then its eccentricity is
If the lines $x -2y = 12$ is tangent to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ at the point $\left( {3,\frac{-9}{2}} \right)$, then the length of the latus rectum of the ellipse is
Which one of the following is the common tangent to the ellipses, $\frac{{{x^2}}}{{{a^2} + {b^2}}} + \frac{{{y^2}}}{{{b^2}}}$ $=1\&$ $ \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{a^2} + {b^2}}}$ $=1$
In an ellipse, the distance between its foci is $6$ and minor axis is $8.$ Then its eccentricity is :
The equations of the common tangents to the ellipse, $ x^2 + 4y^2 = 8 $ $\&$ the parabola $y^2 = 4x$ can be