કાગળની ચાર ચબરખી પર $1, 2, 3$ અને $4$ સંખ્યાઓ લખી છે. આ ચબરખીને એક ડબામાં મૂકીને સારી રીતે મિશ્ર કરી દીધી છે. એક વ્યક્તિ ડબામાંથી પાછી મૂકયા વગર એક પછી એક બે ચબરખીઓ કાઢે છે. આ પ્રયોગનો નિદર્શાવકાશ વર્ણવો.
If $1$ appears on the first drawn slip, then the possibilities that the number appears on the second drawn slip are $2,\,3,$ or $4 .$ Similarly, if $2$ appears on the first drawn slip, then the possibilities that the number appears on the second drawn slip are $1,\,3,$ or $4 .$ The same holds true for the remaining number too.
Thus, the sample space of this experiment is given by
$S=\{(1,2),\,(1,3)$, $(1,4),\,(2,1)$, $(2,3),\,(2,4),\,(3,1),\,(3,2)$, $(3,4),\,(4,1)$, $(4,2),\,(4,3)\}$
એક થેલામાં $9$ તકતી છે. તે પૈકી $4$ લાલ રંગની, $3$ ભૂરા રંગની અને $2$ પીળા રંગની છે. પ્રત્યેક તકતી આકા૨ અને માપમાં સમરૂપ છે. થેલામાંથી એક તકતી યાદચ્છિક રીતે કાઢવામાં આવે છે. જો તે પીળા રંગની હોય હોય, તે અનુસાર કાઢવામાં આવેલ તકતીની સંભાવના શોધો.
એક સિક્કો ઉછાળવામાં આવે છે. જો પરિણામ છાપ મળે તો પાસો ફેંકવામાં આવે છે. જો પાસા પર યુગ્મ સંખ્યા દેખાય તો પાસાને ફરીથી ફેંકવામાં આવે છે. આ પ્રયોગનો નિદર્શાવકાશ શું છે ?
અસમતોલ પાસાને ચાર કરતાં મોટો અંક ન આવે ત્યાં સુધી ઉછાળવામાં આવે છે.તેા યુગ્મ સંખ્યામાં પાસાને ઉછાળવો પડે તેની સંભાવના મેળવો.
ગણ $\{0,1,2,3 \ldots . .10\}$ માંથી બે પૂણાંકો $x$ અને $y$ પૂરવણી સહિત પસંદ કરવામાં આવે છે. તો $|x-y|>5$ ની સંભાવના.....................છે.
જો $52$ પત્તાની ઢગમાંથી $4$ પત્તા વારાફરથી લેવામાં આવે, તો દરેક જોડમાંથી એક હોવાની સંભાવના કેટલી થાય ?