Trigonometrical Equations
hard

 $\left| {\sqrt {2\,{{\sin }^4}\,x\, + \,18\,{{\cos }^2}\,x}  - \,\sqrt {2\,{{\cos }^4}\,x\, + \,18\,{{\sin }^2}\,x} } \right| = 1$ ના $x \in  [0,2\pi ]$ માં ઉકેલોની સંખ્યા .......... છે. 

A

$2$

B

$6$

C

$4$

D

$8$

(JEE MAIN-2016)

Solution

$|\sqrt{2 \sin ^{4} x+18 \cos ^{2} x}-\sqrt{2 \cos ^{4} x+18 \sin ^{2} x}|=1$

$\sqrt{2 \sin ^{4} x+18 \cos ^{2} x}-\sqrt{2} \cos ^{4} x+18 \sin ^{2} x=\pm 1$

$\sqrt{2 \sin ^{4} x+18 \cos ^{2} x}=\pm 1+\sqrt{2 \cos ^{4} x+18 \sin ^{2} x}$

by squaring both the sides we will get $8$ solutions

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.