જો $S = \left\{ {x \in \left[ {0,2\pi } \right]:\left| {\begin{array}{*{20}{c}}
0&{\cos {\mkern 1mu} x}&{ - \sin {\mkern 1mu} x}\\
{\sin {\mkern 1mu} x}&0&{\cos {\mkern 1mu} x}\\
{\cos {\mkern 1mu} x}&{\sin {\mkern 1mu} x}&0
\end{array}} \right| = 0} \right\},$ તો $\sum\limits_{x \in S} {\tan \left( {\frac{\pi }{3} + x} \right)} $ =
$4 + 2\sqrt 3 $
$-2 + \sqrt 3 $
$-2 - \sqrt 3 $
$-4 - 2\sqrt 3 $
જો $n$ એ પૂર્ણાક હોય તો સમીકરણ $\cos x - \sin x = \frac{1}{{\sqrt 2 }}$ નો વ્યાપક ઉકેલ મેળવો.
$\sin 2 x-\sin 4 x+\sin 6 x=0$ ઉકેલો.
$\sin 7\theta = \sin 4\theta - \sin \theta $ અને $0 < \theta < \frac{\pi }{2}$ તેવી $\theta $ ની કિમતો મેળવો.
આપેલ સમીકરણના વ્યાપક ઉકેલ શોધો : $\sin 2 x+\cos x=0$
સમીકરણ ${\tan ^2}\theta + \sec 2\theta - = 1$ નું સમાધાન કરે તેવા $\theta $ નો વ્યાપક ઉકેલ મેળવો.