- Home
- Standard 11
- Mathematics
સમીકરણ $\sin x + \sin y = \sin (x + y)$ અને $|x| + |y| = 1$ નું સમાધાન કરે તેવી $(x, y)$ ની જોડની સંખ્યા મેળવો.
$2$
$4$
$6$
$\infty $
Solution
(c) The first equation can be written as
$2\sin \frac{1}{2}(x + y)\cos \frac{1}{2}(x – y) = 2\sin \frac{1}{2}(x + y)\cos \frac{1}{2}(x + y)$
$\therefore $ Either $\sin \frac{1}{2}(x + y) = 0$ or $\sin \frac{1}{2}x = 0$ or $\sin \frac{1}{2}y = 0$
Thus $x + y = – 1,\,\,x – y = – 1$.
When $x + y = 0,$ we have to reject $x + y = 1$ and check with the options or $x + y = – 1$ and solve it with $x – y = 1$ or $x – y = – 1$
which gives $\left( {\frac{1}{2},\,\, – \frac{1}{2}} \right)$ or $\left( { – \frac{1}{2},\,\frac{1}{2}} \right)$ as the possible solution.
Again solving with $x = 0$, we get $(0,{\rm{ }} \pm 1)$ and solving with $y = 0$, we get $( \pm {\rm{ }}1,\,\,0)$ as the other solution.
Thus we have six pairs of solution for $ x$ and $y$.