The number of $5 -$tuples $(a, b, c, d, e)$ of positive integers such that

$I.$ $a, b, c, d, e$ are the measures of angles of a convex pentagon in degrees

$II$. $a \leq b \leq c \leq d \leq e$

$III.$ $a, b, c, d, e$ are in arithmetic progression is

  • [KVPY 2017]
  • A

    $35$

  • B

    $36$

  • C

    $37$

  • D

    $126$

Similar Questions

Find the $9^{\text {th }}$ term in the following sequence whose $n^{\text {th }}$ term is $a_{n}=(-1)^{n-1} n^{3}$

Find the sum of integers from $1$ to $100$ that are divisible by $2$ or $5.$

If $x=\sum \limits_{n=0}^{\infty} a^{n}, y=\sum\limits_{n=0}^{\infty} b^{n}, z=\sum\limits_{n=0}^{\infty} c^{n}$, where $a , b , c$ are in $A.P.$ and $|a| < 1,|b| < 1,|c| < 1$, $abc \neq 0$, then

  • [JEE MAIN 2022]

If the sum of $n$ terms of an $A.P$. is $2{n^2} + 5n$, then the ${n^{th}}$ term will be

If $a_1, a_2, a_3 …………$ an are in $A.P$ and $a_1 + a_4 + a_7 + …………… + a_{16} = 114$, then $a_1 + a_6 + a_{11} + a_{16}$ is equal to

  • [JEE MAIN 2019]