Let the sum of $n, 2 n, 3 n$ terms of an $A.P.$ be $S_{1}, S_{2}$ and $S_{3},$ respectively, show that $S_{3}=3\left(S_{2}-S_{1}\right)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $a$ and $b$ be the first term and the common difference of the $A.P.$ respectively. Therefore,

$S_{1}=\frac{n}{2}[2 a+(n-1) d]$         .........$(1)$

$S_{2}=\frac{2 n}{2}[2 a+(2 n-1) d]=n[2 a+(2 n-1) d]$         .......$(2)$

$S_{3}=\frac{3 n}{2}[2 a+(3 n-1) d]$          ..........$(3)$

From $(1)$ and $(2),$ we obtain

$S_{2}-S_{1}=n[2 a+(2 n-1) d]-\frac{n}{2}[2 a+(n-1) d]$

$=n\left\{\frac{4 a+4 n d-2 d-2 a-n d+d}{2}\right\}$

$=n\left[\frac{2 a+3 n d-d}{2}\right]$

$=\frac{n}{2}[2 a+(3 n-1) d]$

$\therefore 3\left(S_{2}-S_{1}\right)=\frac{3 n}{2}[2 a+(3 n-1) d]=S_{3}$         [ From $(3)$ ]

Hence, the given result is proved.

Similar Questions

Let $AP ( a ; d )$ denote the set of all the terms of an infinite arithmetic progression with first term a and common difference $d >0$. If $\operatorname{AP}(1 ; 3) \cap \operatorname{AP}(2 ; 5) \cap \operatorname{AP}(3 ; 7)=\operatorname{AP}( a ; d )$ then $a + d$ equals. . . . .

  • [IIT 2019]

After inserting $n$, $A.M.'s$ between $2$ and $38$, the sum of the resulting progression is $200$. The value of $n$ is

The interior angles of a polygon are in $A.P.$ If the smallest angle be ${120^o}$ and the common difference be $5^o$, then the number of sides is

  • [IIT 1980]

If $\frac{a}{b},\frac{b}{c},\frac{c}{a}$ are in $H.P.$, then

Suppose we have an arithmetic progression $a_1, a_2, \ldots a_n, \ldots$ with $a_1=1, a_2-a_1=5$. The median of the finite sequence $a_1, a_2, \ldots, a_k$, where $a_k \leq 2021$ and $a_{k+1} > 2021$ is

  • [KVPY 2021]