Let the sum of $n, 2 n, 3 n$ terms of an $A.P.$ be $S_{1}, S_{2}$ and $S_{3},$ respectively, show that $S_{3}=3\left(S_{2}-S_{1}\right)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $a$ and $b$ be the first term and the common difference of the $A.P.$ respectively. Therefore,

$S_{1}=\frac{n}{2}[2 a+(n-1) d]$         .........$(1)$

$S_{2}=\frac{2 n}{2}[2 a+(2 n-1) d]=n[2 a+(2 n-1) d]$         .......$(2)$

$S_{3}=\frac{3 n}{2}[2 a+(3 n-1) d]$          ..........$(3)$

From $(1)$ and $(2),$ we obtain

$S_{2}-S_{1}=n[2 a+(2 n-1) d]-\frac{n}{2}[2 a+(n-1) d]$

$=n\left\{\frac{4 a+4 n d-2 d-2 a-n d+d}{2}\right\}$

$=n\left[\frac{2 a+3 n d-d}{2}\right]$

$=\frac{n}{2}[2 a+(3 n-1) d]$

$\therefore 3\left(S_{2}-S_{1}\right)=\frac{3 n}{2}[2 a+(3 n-1) d]=S_{3}$         [ From $(3)$ ]

Hence, the given result is proved.

Similar Questions

The sum of $n$ terms of two arithmetic progressions are in the ratio $(3 n+8):(7 n+15) .$ Find the ratio of their $12^{\text {th }}$ terms.

If $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$ is the $A.M.$ between $a$ and $b,$ then find the value of $n$.

The sum of all two digit numbers which, when divided by $4$, yield unity as a remainder is 

If ${a_1},\;{a_2},\;{a_3}.......{a_n}$ are in $A.P.$, where ${a_i} > 0$ for all $i$, then the value of $\frac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \frac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + $ $........ + \frac{1}{{\sqrt {{a_{n - 1}}}  + \sqrt {{a_n}} }} = $

  • [IIT 1982]

Let $S _{ n }=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\ldots$ upto n terms. If the sum of the first six terms of an $A.P.$ with first term $- p$ and common difference $p$ is $\sqrt{2026 S_{2025}}$, then the absolute difference between $20^{\text {th }}$ and $15^{\text {th }}$ terms of the $A.P.$ is

  • [JEE MAIN 2025]