Domain of the function $f(x) = \sqrt {2 - {{\sec }^{ - 1}}x} $ is
$\left( { - \infty , - 1} \right] \cup \left[ {1,\infty } \right)$
$\left( { - \infty , - 1} \right] \cup \left[ {\sec 1,\infty } \right)$
$\left( { - \infty ,\sec 2} \right] \cup \left[ {1,\infty } \right)$
$\left( { - \infty ,\sec 2} \right] \cup \left[ {\sec 1,\infty } \right)$
The number of functions $f :\{1,2,3,4\} \rightarrow\{ a \in Z :| a | \leq 8\}$ satisfying $f ( n )+$ $\frac{1}{ n } f ( n +1)=1, \forall n \in\{1,2,3\}$ is
The range of values of the function $f\left( x \right) = \frac{1}{{2 - 3\sin x}}$ is
If $x = {\log _2}\left( {\sqrt {56 + \sqrt {56 + \sqrt {56 + .... + \infty } } } } \right)$ then
If $f(x) = \cos (\log x)$, then $f(x)f(y) - \frac{1}{2}[f(x/y) + f(xy)] = $
The domain of ${\sin ^{ - 1}}\left[ {{{\log }_3}\left( {\frac{x}{3}} \right)} \right]$ is