Domain of the function $f(x) = \sqrt {2 - {{\sec }^{ - 1}}x} $ is
$\left( { - \infty , - 1} \right] \cup \left[ {1,\infty } \right)$
$\left( { - \infty , - 1} \right] \cup \left[ {\sec 1,\infty } \right)$
$\left( { - \infty ,\sec 2} \right] \cup \left[ {1,\infty } \right)$
$\left( { - \infty ,\sec 2} \right] \cup \left[ {\sec 1,\infty } \right)$
Function $f(x)={\left( {1 + \frac{1}{x}} \right)^x}$ then Range of the function f (x) is
The domain of the function $f(x) = {\sin ^{ - 1}}[{\log _2}(x/2)]$ is
Let $f\left( n \right) = \left[ {\frac{1}{3} + \frac{{3n}}{{100}}} \right]n$ , where $[n]$ denotes the greatest integer less than or equal to $n$. Then $\sum\limits_{n = 1}^{56} {f\left( n \right)} $ is equal to
The period of the function $f (x) =$$\frac{{|\sin x| + |\cos x|}}{{|\sin x - \cos x|}}$ is
Let $a,b,c\; \in R.$ If $f\left( x \right) = a{x^2} + bx + c$ is such that $a + b + c = 3$ and $f\left( {x + y} \right) = f\left( x \right) + f\left( y \right) + xy,$ $\forall x,y \in R,$ then $\mathop \sum \limits_{n = 1}^{10} f\left( n \right)$ is equal to :