વર્તૂળો ${x^2} + {y^2} - 4x - 6y - 12 = 0$ અને${x^2} + {y^2} + 6x + 18y + 26 = 0$ ના સામાન્ય સ્પર્શકોની સંખ્યા મેળવો.
$4$
$1$
$2$
$3$
બે વર્તૂળો ${x^2} + {y^2} = ax$ અને${x^2} + {y^2} = {c^2}$ એકબીજા ને સ્પર્શે છે,તો .
વર્તુળ $x^2 + y^2 = 16$ અને $x^2 + y^2 -2y = 0$ ને ............
વર્તૂળ દ્વારા રેખા પર બનાવેલ અંત:ખંડ $AB$ હોય તો $AB$ જેનો વ્યાસ હોય તેવા વર્તૂળનું સમીકરણ મેળવો.
સમીકરણ $x^{2}+y^{2}+p x+(1-p) y+5=0$ એ વર્તુળ દર્શાવે છે કે જેની ચલિત ત્રીજ્યા $\mathrm{r} \in(0,5]$ છે તો ગણ $S=\left\{q: q=p^{2}\right.$ અને $\mathrm{q}$ એ પૂર્ણાંક છે. $\}$ ની સભ્ય સંખ્યા મેળવો.
વર્તૂળ અને તેની જીવાનું સમીકરણ અનુક્રમે $x^2 + y^2 = a^2$ અને $x\ cos\ \alpha + y\ sin\ \alpha = p$ છે. આ જીવા જે વર્તૂળનો વ્યાસ હોય તે વર્તૂળનું સમીકરણ :