વર્તૂળો $x^2 + y^2+ 2x - 2y + 1 = 0$ અને $x^2 + y^2- 2x - 2y + 1 = 0$ એકબીજાને ક્યાં આગળ સ્પર્શેં ?
$(0, 1)$ આગળ બહારથી
$(0, 1)$ આગળ અંદરથી
$(1, 0)$ આગળ બહારથી
$(1, 0)$ આગળ અંદરથી
જો $(4, -2)$ માંથી પસાર થતું વર્તૂળ $x^2 + y^2 + 2gf + 2fy + c = 0$ એ વર્તુળ $x^2 + y^2 -2x + 4y + 20 = 0$ સમકેન્દ્રી હોય,તો $c$ નું મૂલ્ય મેળવો.
બિંદુ $(a, b)$ માંથી પસાર થતા તથા વર્તૂળ ${x^2} + {y^2} = {p^2}$ ને લંબચ્છેદી હોય તેવા વર્તૂળના કેન્દ્રનો બિંદુગણનું સમીકરણ મેળવો.
જો વર્તુળ $C$ એ બિંદુ $(4, 0)$ માંથી પસાર થતું હોય અને વર્તુળ $x^2 + y^2 + 4x - 6y - 12 = 0$ ને બહારથી બિંદુ $(1, -1)$ માં સ્પર્શે તો વર્તુળ $C$ ની ત્રિજ્યા મેળવો.
જો ચલિત રેખા $3x + 4y -\lambda = 0$ એવી મળે કે જેથી બે વર્તુળો $x^2 + y^2 -2x -2y + 1 = 0$ અને $x^2 + y^2 -18x -2y + 78 = 0$ એ વિરુધ્ધ બાજુએ રહે તો $\lambda $ ની શક્ય કિમતો .............. અંતરાલમાં મળે
આપેલ બે વર્તૂળો $x^2+ y^2 + ax + by + c = 0$ અને $ x^2 + y^2 + dx + ey + f = 0 $ પરસ્પર એકબીજાને લંબરૂપે ક્યારે છેદે ?