The number of elements in the set $S =\left\{\theta \in[0,2 \pi]: 3 \cos ^4 \theta-5 \cos ^2 \theta-2 \sin ^2 \theta+2=0\right\}$ is $...........$.

  • [JEE MAIN 2023]
  • A

    $10$

  • B

    $8$

  • C

    $9$

  • D

    $12$

Similar Questions

The most general value of $\theta $ satisfying the equations $\tan \theta = - 1$ and $\cos \theta = \frac{1}{{\sqrt 2 }}$ is

General solution of $\tan 5\theta = \cot 2\theta $ is  $($ where $n \in Z )$

The number of solutions of $tan\, (5\pi\, cos\, \theta ) = cot (5 \pi \,sin\, \theta )$ for $\theta$ in $(0, 2\pi )$ is :

Find the principal solutions of the equation $\sin x=\frac{\sqrt{3}}{2}$

The value of the expression

$\frac{{\left (sin 36^o + cos 36^o - \sqrt 2  sin 27^o)( {\sin {{36}^0} + \cos {{36}^0} - \sqrt 2 \sin {{27}^0}} \right)}}{{2\sin {{54}^0}}}$ is less than