The solution of the equation $cos^2\theta\, +\, sin\theta\, + 1\, =\, 0$ lies in the interval
$\left( { - \frac{\pi }{3}\,,\,\frac{\pi }{4}} \right)$
$\left( {\frac{\pi }{4}\,,\,\frac{3\pi }{4}} \right)$
$\left( {\frac{3\pi }{4}\,,\,\frac{5\pi }{4}} \right)$
$\left( {\frac{5\pi }{4}\,,\,\frac{7\pi }{4}} \right)$
Solve $\sin 2 x-\sin 4 x+\sin 6 x=0$
The equation $\sqrt 3 \sin x + \cos x = 4$ has
The general value of $\theta $satisfying the equation $2{\sin ^2}\theta - 3\sin \theta - 2 = 0$ is
The general value of $\theta $ satisfying the equation $\tan \theta + \tan \left( {\frac{\pi }{2} - \theta } \right) = 2$, is
If ${\tan ^2}\theta - (1 + \sqrt 3 )\tan \theta + \sqrt 3 = 0$, then the general value of $\theta $ is