- Home
- Standard 11
- Mathematics
$\log _{\left(x+\frac{7}{2}\right)}\left(\frac{x-7}{2 x-3}\right)^2 \geq 0$ નાં પૂર્ણાક ઉકેલો $x$ ની સંખ્યા $..........$ છે.
$6$
$8$
$5$
$7$
Solution
$\log _{x+\frac{7}{2}}\left(\frac{x-7}{2 x-3}\right)^2 \geq 0$
Feasible region : $x+\frac{7}{2}>0 \Rightarrow x > -\frac{7}{2}$
And $x+\frac{7}{2} \neq 1 \Rightarrow x \neq-\frac{5}{2}$
And $\frac{x-7}{2 x-3} \neq 0 \quad$ and $2 x-3 \neq 0$
$\Downarrow$
$x \neq 7$
$x \neq \frac{3}{2}$
Taking intersection : $x \in\left(\frac{-7}{2}, \infty\right)-\left\{-\frac{5}{2}, \frac{3}{2}, 7\right\}$
Now $\log _a b \geq 0$ if $a > 1$ and $b \geq 1$
Or
$a \in(0,1)$ and $b \in(0,1)$
$\text { C-I; } \quad x+\frac{7}{2}>1 \text { and }\left(\frac{x-7}{2 x-3}\right)^2 \geq 1$
$x > -\frac{5}{2} \quad(2 x-3)^2-(x-7)^2 \leq 0$
$(2 x-3+n-7)(2 x-3-x+7) \leq 0$
$(3 x-10)(x+4) \leq 0$
$\quad x \in\left[-4, \frac{10}{3}\right]$
$\text { Intersection : } x \in\left(\frac{-5}{2}, \frac{10}{3}\right]$
$\text { C-II } x+\frac{7}{2} \in(0,1) \text { and }\left(\frac{x-7}{2 x-3}\right)^2 \in(0,1)$
$0 < x+\frac{7}{2} < 1 \quad \quad\left(\frac{x-7}{2 x-3}\right)^2 < 1$
$-\frac{7}{2} < x < \frac{-5}{2} \quad(x-7)^2<(2 x-3)^2$
$x \in(-\infty,-4) \cup\left(\frac{10}{3}, \infty\right)$
No common values of $x$.
Hence intersection with feasible region
We get $x \in\left(\frac{-5}{2}, \frac{10}{3}\right]-\left\{\frac{3}{2}\right\}$
Integral value of $x$ are $\{-2,-1,0,1,2,3\}$
No. of integral values $=6$