If $sin^4\,\,\alpha + 4\,cos^4\,\,\beta + 2 = 4\sqrt 2\,\,sin\,\alpha \,cos\,\beta ;$ $\alpha \,,\,\beta \, \in \,[0,\pi ],$ then $cos( \alpha + \beta)$ is equal to
$0$
$-1$
$\sqrt 2$
$-\sqrt 2$
General solution of $\tan 5\theta = \cot 2\theta $ is $($ where $n \in Z )$
General solution of $eq^n\, 2tan\theta \, -\, cot\theta =\, -1$ is
If $3({\sec ^2}\theta + {\tan ^2}\theta ) = 5$, then the general value of $\theta $ is
Let $A = \left\{ {\theta \,:\,\sin \,\left( \theta \right) = \tan \,\left( \theta \right)} \right\}$ and $B = \left\{ {\theta \,:\,\cos \,\left( \theta \right) = 1} \right\}$ be two sets. Then
The set of values of $‘a’$ for which the equation, $cos\, 2x + a\, sin\, x = 2a - 7$ possess a solution is :