If $sin^4\,\,\alpha + 4\,cos^4\,\,\beta + 2 = 4\sqrt 2\,\,sin\,\alpha \,cos\,\beta ;$ $\alpha \,,\,\beta \, \in \,[0,\pi ],$ then $cos( \alpha + \beta)$ is equal to

  • [JEE MAIN 2019]
  • A

    $0$

  • B

    $-1$

  • C

    $\sqrt 2$

  • D

    $-\sqrt 2$

Similar Questions

General solution of $\tan 5\theta = \cot 2\theta $ is  $($ where $n \in Z )$

General solution of $eq^n\, 2tan\theta \, -\, cot\theta  =\, -1$ is

If $3({\sec ^2}\theta + {\tan ^2}\theta ) = 5$, then the general value of $\theta $ is

Let $A = \left\{ {\theta \,:\,\sin \,\left( \theta  \right) = \tan \,\left( \theta  \right)} \right\}$ and $B = \left\{ {\theta \,:\,\cos \,\left( \theta  \right) = 1} \right\}$ be two sets. Then

  • [JEE MAIN 2013]

The set of values of $‘a’$ for which the equation, $cos\, 2x + a\, sin\, x = 2a - 7$ possess a solution is :