$2 f(a)-f(b)+3 f(c)+$ $f ( d )=0$ થાય તેવા એક - એક વિધેયો $f :\{ a , b , c , d \} \rightarrow$ $\{0,1,2, \ldots ., 10\}$ ની સંખ્યા ......... છે.
$32$
$31$
$22$
$89$
વિધેય $f\left( x \right) = {4^{ - {x^2}}} + {\cos ^{ - 1}}\left( {\frac{x}{2} - 1} \right) + \log \left( {\cos x} \right)$ ને વ્યાખ્યાયિત થવા માટે $\left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)$ માંથી મહતમ અંતરાલ મેળવો.
અહી $f: R \rightarrow R$ એ મુજબ વ્યાખ્યાયિત છે $f(x)=\left\{\begin{array}{l}\frac{\sin \left(x^2\right)}{x} \text { if } x \neq 0 \\ 0 \text { if } x=0\end{array}\right\}$ હોય તો $x=0$ આગળ $f$ એ . . .
જો $f(x) = b{x^2} + cx + d$ અને $f(x + 1) - f(x) = 8x + 3$ હોય તો $b$ અને $c$ ની કિમત મેળવો.
જો દરેક $x \in R$ માટે વિધેય $f:R \to R$ અને $g:R \to R$ એ $f(x) = \;|x|$ અને $g(x) = \;|x|$ આપેલ છે , તો $\{ x \in R\;:g(f(x)) \le f(g(x))\} = $
વિધેય $f(x) = \;|px - q|\; + r|x|,\;x \in ( - \infty ,\;\infty )$, કે જ્યાં $p > 0,\;q > 0,\;r > 0$ ની ન્યૂનતમ કિમંત ધારો કે માત્ર એકજ બિંદુએ મળે જો . . .