- Home
- Standard 11
- Mathematics
6.Permutation and Combination
hard
વ્યાપ્તત વિધેય $f$ એ $\{1, 2, 3, …, 20\}$ થી $\{1, 2, 3, …, 20\}$ પર આપલે છે કે જેથી $k$ જ્યારે $4$ નો ગુણક હોય ત્યારે $f(k)$ એ $3$ નો ગુણક થાય તો $f$ ના વિધેય ની સંખ્યા મેળવો.
A
${6^5} \times \left( {15} \right)!$
B
$5! \times 6!$
C
$\left( {15} \right)! \times 6!$
D
${5^6} \times 15$
(JEE MAIN-2019)
Solution
$k = \{ 4,8,12,16,20\} $
$f(k)\,$ can takes the values $\{ 3,6,9,12,15,18\} $
Number of ways ${ = ^6}{C_5}.5!$
$\therefore $ Total number of onto functions
${ = ^6}{C_5}.5!(15!)$
$ = (6!)(15!)$
Standard 11
Mathematics