Gujarati
4-2.Quadratic Equations and Inequations
normal

The number of ordered pairs $(x, y)$ of real numbers that satisfy the simultaneous equations $x+y^2=x^2+y=12$ is

A

$0$

B

$1$

C

$2$

D

$4$

(KVPY-2015)

Solution

(d)

We have,

$x \quad x+y^2=x^2+y =12$

$x+y^2 =12$

$x^2+y =12 \ldots \text {…(ii) }$

On subtracting Eq.$(i)$ from Eq. $(ii)$, we get

$\left(x^2-x\right)+\left(y-y^2\right)=0$

$\Rightarrow \quad\left(x^2-y^2\right)-(x-y)=0$

$\Rightarrow \quad(x-y)(x+y-1)=0$

$\Rightarrow \quad x=y, x+y=1$

When $x=y$

$\therefore \quad x^2+x=12 \Rightarrow x^2+x-12=0$

$\Rightarrow(x+4)(x-3)=0$

$x=-4,3, y=-4,3$

When $x+y=1$

$\therefore \quad x^2+1-x=12$

$\Rightarrow x^2-x-11=0$

$\Rightarrow \quad x=\frac{1 \pm \sqrt{45}}{2}$

$\therefore$ Total number of ordered pair of $(x, y)$ is $4 .$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.