4-2.Quadratic Equations and Inequations
medium

Let $\alpha, \beta$ be roots of $x^2+\sqrt{2} x-8=0$. If $\mathrm{U}_{\mathrm{n}}=\alpha^{\mathrm{n}}+\beta^{\mathrm{n}}$, then $\frac{\mathrm{U}_{10}+\sqrt{2} \mathrm{U}_9}{2 \mathrm{U}_8}$ is equal to ............

A

$5$

B

$9$

C

$44$

D

$4$

(JEE MAIN-2024)

Solution

$ \frac{\alpha^{10}+\beta^{10}+\sqrt{2}\left(\alpha^9+\beta^9\right)}{2\left(\alpha^8+\beta^8\right)} $

$ \frac{\alpha^8\left(\alpha^2+\sqrt{2} \alpha\right)+\beta^8\left(\beta^2+\sqrt{2} \beta\right)}{2\left(\alpha^8+\beta^8\right)} $

$ \frac{8 \alpha^8+8 \beta^8}{2\left(\alpha^8+\beta^8\right)}=4$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.