The number of points, where the curve $f(x)=e^{8 x}-e^{6 x}-3 e^{4 x}-e^{2 x}+1, x \in R$ cuts $x$-axis, is equal to

  • [JEE MAIN 2023]
  • A

    $2$

  • B

    $4$

  • C

    $6$

  • D

    $8$

Similar Questions

Let $f(x) = \left\{ {\begin{array}{*{20}{c}}
{\,{x^3} - {x^2} + 10x - 5\,\,,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x \le 1\,\,\,\,\,\,\,\,\,\,\,\,}\\
{ - 2x + {{\log }_2}({b^2} - 2),\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x\, > 1\,\,\,\,\,\,\,\,\,\,\,\,}
\end{array}} \right.$ the set of values of $b$ for which $f(x)$ has greatest value at $x = 1$ is given by 

The domain of $f(x) = \frac{1}{{\sqrt {{{\log }_{\frac{\pi }{4}}}({{\sin }^{ - 1}}x) - 1} }}$,is

Domain of the function $f(x)\,=\,\frac{1}{{\sqrt {(x + 1)({e^x} - 1)(x - 4)(x + 5)(x - 6)} }}$

The number of functions $f :\{1,2,3,4\} \rightarrow\{ a \in Z :| a | \leq 8\}$ satisfying $f ( n )+$ $\frac{1}{ n } f ( n +1)=1, \forall n \in\{1,2,3\}$ is

  • [JEE MAIN 2023]

For a real number $x,\;[x]$ denotes the integral part of $x$. The value of $\left[ {\frac{1}{2}} \right] + \left[ {\frac{1}{2} + \frac{1}{{100}}} \right] + \left[ {\frac{1}{2} + \frac{2}{{100}}} \right] + .... + \left[ {\frac{1}{2} + \frac{{99}}{{100}}} \right]$ is

  • [IIT 1994]