The number of positive integral solutions of the equation $\left| {\begin{array}{*{20}{c}}{{x^3} + 1}&{{x^2}y}&{{x^2}z}\\{x{y^2}}&{{y^3} + 1}&{{y^2}z}\\{x{z^2}}&{y{z^2}}&{{z^3} + 1}\end{array}} \right|$ $= 11$ is
$0$
$3$
$6$
$12$
$2\,\,\left| {\,\begin{array}{*{20}{c}}1&1&1\\a&b&c\\{{a^2} - bc}&{{b^2} - ac}&{{c^2} - ab}\end{array}\,} \right| = $
If $x$ is a positive integer, then $\Delta = \left| {\,\begin{array}{*{20}{c}}{x!}&{(x + 1)!}&{(x + 2)!}\\{(x + 1)!}&{(x + 2)!}&{(x + 3)!}\\{(x + 2)!}&{(x + 3)!}&{(x + 4)!}\end{array}\,} \right|$ is equal to
Let the numbers $2, b, c$ be in an $A.P$ and $A = \left[ {\begin{array}{*{20}{c}}
1&1&1 \\
2&b&c \\
4&{{b^2}}&{{c^2}}
\end{array}} \right]$. If $det(A) \in [2,16]$ then $c$ lies in the interval
Let $f (x) =$ $\left| {\begin{array}{*{20}{c}}{1\, + \,{{\sin }^2}x}&{{{\cos }^2}x}&{4\,\sin \,2x}\\{{{\sin }^2}x}&{1\, + \,{{\cos }^2}x}&{4\,\sin \,2x}\\{{{\sin }^2}x}&{{{\cos }^2}x}&{1\, + \,4\,\sin \,2x}\end{array}} \right|$, then the maximum value of $f (x) =$
The value of $\sum\limits_{n = 1}^N {{U_n},} $ if ${U_n} = \left| {\,\begin{array}{*{20}{c}}n&1&5\\{{n^2}}&{2N + 1}&{2N + 1}\\{{n^3}}&{3{N^2}}&{3N}\end{array}\,} \right|$ is