Evaluate $\left|\begin{array}{ccc}\cos \alpha \cos \beta & \cos \alpha \operatorname{csin} \beta & -\sin \alpha \\ -\sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha\end{array}\right|$

  • A

    $2$

  • B

    $-1$

  • C

    $1$

  • D

    $0$

Similar Questions

If $a, b, c,$ are non zero complex numbers satisfying $a^2 + b^2 + c^2 = 0$ and $\left| {\begin{array}{*{20}{c}}
{{b^2} + {c^2}}&{ab}&{ac}\\
{ab}&{{c^2} + {a^2}}&{bc}\\
{ac}&{bc}&{{a^2} + {b^2}}
\end{array}} \right| = k{a^2}{b^2}{c^2},$ then $k$ is equal to

  • [AIEEE 2012]

If ${D_r} = \left| {\begin{array}{*{20}{c}}{{2^{r - 1}}}&{{{2.3}^{r - 1}}}&{{{4.5}^{r - 1}}}\\x&y&z\\{{2^n} - 1}&{{3^n} - 1}&{{5^n} - 1}\end{array}} \right|$, then the value of $\sum\limits_{r = 1}^n {{D_r} = } $

If the system of linear equation $x + 2ay + az = 0,$ $x + 3by + bz = 0,$ $x + 4cy + cz = 0$  has a non zero solution, then $a,b,c$

  • [AIEEE 2003]

$\left| {\,\begin{array}{*{20}{c}}{x + 1}&{x + 2}&{x + 4}\\{x + 3}&{x + 5}&{x + 8}\\{x + 7}&{x + 10}&{x + 14}\end{array}\,} \right| = $

By using properties of determinants, show that:

$\left|\begin{array}{ccc}1 & x & x^{2} \\ x^{2} & 1 & x \\ x & x^{2} & 1\end{array}\right|=\left(1-x^{3}\right)^{2}$