The number of possible tangents which can be drawn to the curve $4x^2 - 9y^2 = 36$ , which are perpendicular to the straight line $5x + 2y -10 = 0$ is

  • A

    $0$

  • B

    $1$

  • C

    $2$

  • D

    $4$

Similar Questions

If the foci of the ellipse $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{{b^2}}} = 1$ coincide with the foci of the hyperbola $\frac{{{x^2}}}{{144}} - \frac{{{y^2}}}{{81}} = \frac{1}{{25}},$ then $b^2$ is equal to

  • [AIEEE 2012]

The equation to the hyperbola having its eccentricity $2$ and the distance between its foci is $8$

If the two tangents drawn on hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ in such a way that the product of their gradients is ${c^2}$, then they intersects on the curve

Let the tangent drawn to the parabola $y ^{2}=24 x$ at the point $(\alpha, \beta)$ is perpendicular to the line $2 x$ $+2 y=5$. Then the normal to the hyperbola $\frac{x^{2}}{\alpha^{2}}-\frac{y^{2}}{\beta^{2}}=1$ at the point $(\alpha+4, \beta+4)$ does $NOT$ pass through the point.

  • [JEE MAIN 2022]

The eccentricity of the hyperbola $\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{{25}} = 1$ is