Gujarati
Trigonometrical Equations
medium

The number of real numbers $\lambda$ for which the equality $\frac{\sin (\lambda \alpha) \quad \cos (\lambda \alpha)}{\sin \alpha}=\lambda-1$,holds for all real $\alpha$ which are not integral multiples of $\pi / 2$ is

A

$1$

B

$2$

C

$3$

D

infinite

(KVPY-2015)

Solution

(b)

We have,

$\frac{\sin (\lambda, \alpha) \cos (\lambda \alpha)}{\sin \alpha \quad \cos \alpha}=\lambda-1$

$\Rightarrow \cos \alpha \sin \lambda \alpha-\cos (\lambda \alpha)$

$\Rightarrow \sin (\lambda-1) \alpha=\frac{\lambda-1}{2} \sin 2 \alpha$

$\therefore \quad \lambda-1=2 \text { or } \lambda-1=0$

$\therefore \quad \lambda=3 \text { or } \lambda=1$

Hence, $\lambda$ has two values.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.