The number of real numbers $\lambda$ for which the equality $\frac{\sin (\lambda \alpha) \quad \cos (\lambda \alpha)}{\sin \alpha}=\lambda-1$,holds for all real $\alpha$ which are not integral multiples of $\pi / 2$ is

  • [KVPY 2015]
  • A

    $1$

  • B

    $2$

  • C

    $3$

  • D

    infinite

Similar Questions

The equation ${\sin ^4}x + {\cos ^4}x + \sin 2x + \alpha = 0$ is solvable for

If $2\sin \theta + \tan \theta = 0$, then the general values of $\theta $ are

If $1\,\, + \,\,\sin \theta \,\, + \,\,{\sin ^2}\theta  +  \ldots .\,\,to\,\,\infty \,\, = \,\,4\, + 2\sqrt 3 ,\,\,0\,\, < \,\theta \,\,\pi ,\,\,\theta \,\, \ne \,\frac{\pi }{2}\,,$ then $\theta  = $

If $2{\tan ^2}\theta = {\sec ^2}\theta ,$ then the general value of $\theta $ is

If $\sqrt 2 \sec \theta + \tan \theta = 1,$ then the general value $\theta $ is