If $\sin x=\frac{3}{5}, \cos y=-\frac{12}{13},$ where $x$ and $y$ both lie in second quadrant, find the value of $\sin (x+y)$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We know that

$\sin (x+y)=\sin x \cos y+\cos x \sin y$.......$(1)$

Now $\cos ^{2} x=1-\sin ^{2} x=1-\frac{9}{25}=\frac{16}{25}$

Therefore $\cos x=\pm \frac{4}{5}$

since $x$ lies in second quadrant, cos $x$ is negative.

Hence $\cos x=-\frac{4}{5}$

Now $\sin ^{2} y=1-\cos ^{2} y=1-\frac{144}{169}=\frac{25}{169}$

i.e. $\sin y=\pm \frac{5}{13}$

since $y$ lies in second quadrant, hence sin $y$ is positive. Therefore, $\sin y=\frac{5}{13} .$ Substituting the values of $\sin x, \sin y, \cos x$ and $\cos y$ in $(1),$ we get

$\sin (x+y)=\frac{3}{5} \times\left(-\frac{12}{13}\right)+\left(-\frac{4}{5}\right) \times \frac{5}{13}$

$\frac{36}{65}-\frac{20}{65}=-\frac{56}{65}$

Similar Questions

General value of $\theta $ satisfying the equation ${\tan ^2}\theta + \sec 2\theta - = 1$ is

  • [IIT 1996]

The most general value of $\theta $ which will satisfy both the equations $\sin \theta = - \frac{1}{2}$ and $\tan \theta = \frac{1}{{\sqrt 3 }}$ is

If $\alpha,-\frac{\pi}{2}<\alpha<\frac{\pi}{2}$ is the solution of $4 \cos \theta+5 \sin \theta=1$, then the value of $\tan \alpha$ is

  • [JEE MAIN 2024]

If $\cos \theta + \cos 2\theta + \cos 3\theta = 0$, then the general value of $\theta $ is

The number of solutions $x$ of the equation $\sin \left(x+x^2\right)-\sin \left(x^2\right)=\sin x$ in the interval $[2,3]$ is

  • [KVPY 2018]