If $\sin x=\frac{3}{5}, \cos y=-\frac{12}{13},$ where $x$ and $y$ both lie in second quadrant, find the value of $\sin (x+y)$.
We know that
$\sin (x+y)=\sin x \cos y+\cos x \sin y$.......$(1)$
Now $\cos ^{2} x=1-\sin ^{2} x=1-\frac{9}{25}=\frac{16}{25}$
Therefore $\cos x=\pm \frac{4}{5}$
since $x$ lies in second quadrant, cos $x$ is negative.
Hence $\cos x=-\frac{4}{5}$
Now $\sin ^{2} y=1-\cos ^{2} y=1-\frac{144}{169}=\frac{25}{169}$
i.e. $\sin y=\pm \frac{5}{13}$
since $y$ lies in second quadrant, hence sin $y$ is positive. Therefore, $\sin y=\frac{5}{13} .$ Substituting the values of $\sin x, \sin y, \cos x$ and $\cos y$ in $(1),$ we get
$\sin (x+y)=\frac{3}{5} \times\left(-\frac{12}{13}\right)+\left(-\frac{4}{5}\right) \times \frac{5}{13}$
$\frac{36}{65}-\frac{20}{65}=-\frac{56}{65}$
If $\cos \theta = \frac{{ - 1}}{2}$ and ${0^o} < \theta < {360^o}$, then the values of $\theta $ are
If $\cot (\alpha + \beta ) = 0,$ then $\sin (\alpha + 2\beta ) = $
Let $S$ be the sum of all solutions (in radians) of the equation $\sin ^{4} \theta+\cos ^{4} \theta-\sin \theta \cos \theta=0$ in $[0,4 \pi]$ Then $\frac{8 \mathrm{~S}}{\pi}$ is equal to ...... .
If $0\, \le \,x\, < \frac{\pi }{2},$ then the number of values of $x$ for which $sin\,x -sin\,2x + sin\,3x=0,$ is
The value of expression $\frac{{2(\sin {1^o} + \sin {2^o} + \sin {3^o} + ..... + \sin {{89}^o})}}{{2(\cos {1^o} + \cos {2^o} + .... + \cos {{44}^o}) + 1}}$ equals