The number of real roots of the polynomial equation $x^4-x^2+2 x-1=0$ is
$0$
$2$
$3$
$4$
Suppose $a, b, c$ are positive integers such that $2^a+4^b+8^c=328$. Then, $\frac{a+2 b+3 c}{a b c}$ is equal to
If $\alpha $, $\beta$, $\gamma$ are roots of ${x^3} - 2{x^2} + 3x - 2 = 0$ , then the value of$\left( {\frac{{\alpha \beta }}{{\alpha + \beta }} + \frac{{\alpha \gamma }}{{\alpha + \gamma }} + \frac{{\beta \gamma }}{{\beta + \gamma }}} \right)$ is
For a real number $x$, let $[x]$ denote the largest integer less than or equal to $x$, and let $\{x\}=x-[x]$. The number of solutions $x$ to the equation $[x]\{x\}=5$ with $0 \leq x \leq 2015$ is
Two distinct polynomials $f(x)$ and $g(x)$ are defined as follows:
$f(x)=x^2+a x+2 ; g(x)=x^2+2 x+a$.If the equations $f(x)=0$ and $g(x)=0$ have a common root, then the sum of the roots of the equation $f(x)+g(x)=0$ is
Let $x_1,x_2,x_3 \in R-\{0\} $ ,$x_1 + x_2 + x_3\neq 0$ and $\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}=\frac{1}{x_1+x_2+x_3}$, then $\frac{1}{{x^n}_1+{x^n}_2+{x^n}_3} =\frac{1}{{x^n}_1}+\frac{1}{{x^n}_2}+\frac{1}{{x^n}_3}$ holds good for