The product of all real roots of the equation ${x^2} - |x| - \,6 = 0$ is

  • A

    $-9$

  • B

    $6$

  • C

    $9$

  • D

    $36$

Similar Questions

Let $x, y, z$ be positive reals. Which of the following implies $x=y=z$ ?

$I.$ $x^3+y^3+z^3=3 x y z$

$II.$ $x^3+y^2 z+y z^2=3 x y z$

$III.$ $x^3+y^2 z+z^2 x=3 x y z$

$IV.$ $(x+y+z)^3=27 x y z$

  • [KVPY 2015]

If $\alpha,\beta,\gamma, \delta$ are the roots of $x^4-100x^3+2x^2+4x+10 = 0$ then $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}+\frac{1}{\delta}$ is equal to :-

The number of real solutions of the equation $|{x^2} + 4x + 3| + 2x + 5 = 0 $are

  • [IIT 1988]

If the sum of two of the roots of ${x^3} + p{x^2} + qx + r = 0$ is zero, then $pq =$

Let $\mathrm{S}=\left\{x \in R:(\sqrt{3}+\sqrt{2})^x+(\sqrt{3}-\sqrt{2})^x=10\right\}$. Then the number of elements in $\mathrm{S}$ is :

  • [JEE MAIN 2024]