The solutions of the quadratic equation ${(3|x| - 3)^2} = |x| + 7$ which belongs to the domain of definition of the function $y = \sqrt {x(x - 3)} $ are given by
$ \pm 1/9,\; \pm 2$
$ - 1/9,\;2$
$1/9,\; - 2$
$ - 1/9,\; - 2$
The population of cattle in a farm increases so that the difference between the population in year $n+2$ and that in year $n$ is proportional to the population in year $n+1$. If the populations in years $2010, 2011$ and $2013$ were $39,60$ and $123$,respectively, then the population in $2012$ was
Complete solution set of the inequality $\left( {{{\sec }^{ - 1}}\,x - 4} \right)\left( {{{\sec }^{ 1}}\,x - 1} \right)\left( {{{\sec }^{ - 1}}\,x - 2} \right) \ge 0$ is
If for a posiive integer $n$ , the quadratic equation, $x\left( {x + 1} \right) + \left( {x + 1} \right)\left( {x + 2} \right) + .\;.\;.\; + \left( {x + \overline {n - 1} } \right)\left( {x + n} \right) = 10n$ has two consecutive integral solutions, then $n$ is equal to:
The number of real solutions of the equation $3\left(x^2+\frac{1}{x^2}\right)-2\left(x+\frac{1}{x}\right)+5=0$, is
The solution of the equation $2{x^2} + 3x - 9 \le 0$ is given by