If $a < 0$ then the inequality $a{x^2} - 2x + 4 > 0$ has the solution represented by

  • A

    $\frac{{1 + \sqrt {1 - 4a} }}{a} > x > \frac{{1 - \sqrt {1 - 4a} }}{a}$

  • B

    $x < \frac{{1 - \sqrt {1 - 4a} }}{a}$

  • C

    $x < 2$

  • D

    $2 > x > \frac{{1 + \sqrt {1 - 4a} }}{a}$

Similar Questions

If $x$ is real, then the maximum and minimum values of the expression $\frac{{{x^2} - 3x + 4}}{{{x^2} + 3x + 4}}$ will be

  • [IIT 1984]

The number of real roots of the polynomial equation $x^4-x^2+2 x-1=0$ is

  • [KVPY 2018]

If $x$ is real, the expression $\frac{{x + 2}}{{2{x^2} + 3x + 6}}$ takes all value in the interval

  • [IIT 1969]

The number of distinct real roots of $x^4-4 x^3+12 x^2+x-1=0$ is

  • [IIT 2011]

Let $\alpha, \beta$ be two roots of the equation $x^{2}+(20)^{\frac{1}{4}} x+(5)^{\frac{1}{2}}=0$. Then $\alpha^{8}+\beta^{8}$ is equal to:

  • [JEE MAIN 2021]