Gujarati
4-2.Quadratic Equations and Inequations
easy

If $a < 0$ then the inequality $a{x^2} - 2x + 4 > 0$ has the solution represented by

A

$\frac{{1 + \sqrt {1 - 4a} }}{a} > x > \frac{{1 - \sqrt {1 - 4a} }}{a}$

B

$x < \frac{{1 - \sqrt {1 - 4a} }}{a}$

C

$x < 2$

D

$2 > x > \frac{{1 + \sqrt {1 - 4a} }}{a}$

Solution

(a) $a{x^2} – 2x + 4 > 0$

==> $x = \frac{{2 \pm \sqrt {4 – 16a} }}{{2a}}$ ==> $x = \frac{{1 \pm \sqrt {1 – 4a} }}{a}$

$\therefore$ $\frac{{1 – \sqrt {1 – 4a} }}{a} < x < \frac{{1 + \sqrt {1 – 4a} }}{a}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.