If $a < 0$ then the inequality $a{x^2} - 2x + 4 > 0$ has the solution represented by

  • A

    $\frac{{1 + \sqrt {1 - 4a} }}{a} > x > \frac{{1 - \sqrt {1 - 4a} }}{a}$

  • B

    $x < \frac{{1 - \sqrt {1 - 4a} }}{a}$

  • C

    $x < 2$

  • D

    $2 > x > \frac{{1 + \sqrt {1 - 4a} }}{a}$

Similar Questions

Let, $\alpha, \beta$ be the distinct roots of the equation $\mathrm{x}^2-\left(\mathrm{t}^2-5 \mathrm{t}+6\right) \mathrm{x}+1=0, \mathrm{t} \in \mathrm{R}$ and $\mathrm{a}_{\mathrm{n}}=\alpha^{\mathrm{n}}+\beta^{\mathrm{n}}$. Then the minimum value of $\frac{\mathrm{a}_{2023}+\mathrm{a}_{2025}}{\mathrm{a}_{2024}}$ is

  • [JEE MAIN 2024]

If $\alpha , \beta $ are the roots of the equation $x^2 - 2x + 4 = 0$ , then the value of $\alpha ^n +\beta ^n$ is

Let $t$ be real number such that $t^2=a t+b$ for some positive integers $a$ and $b$. Then, for any choice of positive integers $a$ and $b, t^3$ is never equal to

  • [KVPY 2016]

Consider the quadratic equation $n x^2+7 \sqrt{n x+n}=0$ where $n$ is a positive integer. Which of the following statements are necessarily correct?

$I$. For any $n$, the roots are distinct.

$II$. There are infinitely many values of $n$ for which both roots are real.

$III$. The product of the roots is necessarily an integer.

  • [KVPY 2016]

The number of solutions of $\frac{{\log 5 + \log ({x^2} + 1)}}{{\log (x - 2)}} = 2$ is