- Home
- Standard 11
- Mathematics
4-2.Quadratic Equations and Inequations
medium
સમીકરણ $|x{|^2}$-$3|x| + 2 = 0$ ના વાસ્તવિક બીજની સંખ્યા મેળવો.
A
$1$
B
$2$
C
$3$
D
$4$
(AIEEE-2003) (IIT-1982) (IIT-1989)
Solution
(d) Given $|x{|^2} – 3|x| + 2 = 0$
Here we consider two cases $viz.\,\,x < 0$and $x > 0$
Case I : $x < 0$ This gives ${x^2} + 3x + 2 = 0$
==> $(x + 2)(x + 1) = 0\,\, \Rightarrow x = – 2, – 1$
Also $x = – 1, – 2$satisfy $x < 0,$so $x = – 1$, $-2$ is solution in this case.
Case II : $x > 0$. This gives ${x^2} – 3x + 2 = 0$
==> $(x – 2)(x – 1) = 0\,\, \Rightarrow x = 2,1$, so $x = 2$,$ 1$ is solution in this case.
Hence the number of solutions are four i.e. $x = – 1,\,1,\,2,\, – 2$
Aliter : $|x{|^2} – 3|x| + 2 = 0$
==> $(|x| – 1)(|x| – 2) = 0$
==> $|x| = 1$and $|x| = 2$==> $x = \pm 1,x = \pm 2$.
Standard 11
Mathematics