The number of solution$(s)$ of the equation $2^x = x^2$ is

  • A

    $1$

  • B

    $2$

  • C

    $3$

  • D

    $4$

Similar Questions

The maximum value $M$ of $3^x+5^x-9^x+15^x-25^x$, as $x$ varies over reals, satisfies

  • [KVPY 2012]

Let $\alpha$ and $\beta$ be the roots of $x^2-x-1=0$, with $\alpha>\beta$. For all positive integers $n$, define

$a_n=\frac{\alpha^n-\beta^n}{\alpha-\beta}, n \geq 1$

$b_1=1 \text { and } b_n=a_{n-1}+a_{n+1}, n \geq 2.$

Then which of the following options is/are correct?

$(1)$ $a_1+a_2+a_3+\ldots . .+a_n=a_{n+2}-1$ for all $n \geq 1$

$(2)$ $\sum_{n=1}^{\infty} \frac{ a _{ n }}{10^{ n }}=\frac{10}{89}$

$(3)$ $\sum_{n=1}^{\infty} \frac{b_n}{10^n}=\frac{8}{89}$

$(4)$ $b=\alpha^n+\beta^n$ for all $n>1$

  • [IIT 2019]

Let $a$ be the largest real root and $b$ be the smallest real root of the polynomial equation $x^6-6 x^5+15 x^4-20 x^3+15 x^2-6 x+1=0$ Then $\frac{a^2+b^2}{a+b+1}$ is

  • [KVPY 2021]

The smallest value of ${x^2} - 3x + 3$ in the interval $( - 3,\,3/2)$ is

In the equation ${x^3} + 3Hx + G = 0$, if $G$ and $H$ are real and ${G^2} + 4{H^3} > 0,$ then the roots are