The number of solution$(s)$ of the equation $ln(lnx)$ = $log_xe$ is -

  • A

    $0$

  • B

    $1$

  • C

    $2$

  • D

    infinite

Similar Questions

Let $a$ ,$b$, $c$ , $d$ , $e$ be five numbers satisfying the system of equations

                            $2a + b + c + d + e = 6$
                            $a + 2b + c + d + e = 12$
                            $a + b + 2c + d + e = 24$
                            $a + b + c + 2d + e = 48$
                            $a + b + c + d + 2e = 96$ ,

then $|c|$ is equal to 

Number of solutions of equation $|x^2 -2|x||$ = $2^x$ , is

The sum of all real values of $x$ satisfying the equation ${\left( {{x^2} - 5x + 5} \right)^{{x^2} + 4x - 60}} = 1$ is ;

  • [JEE MAIN 2016]

A real root of the equation ${\log _4}\{ {\log _2}(\sqrt {x + 8} - \sqrt x )\} = 0$ is

The complete solution of the inequation ${x^2} - 4x < 12\,{\rm{ is}}$