The number of solutions of $sin \,3x\, = cos\, 2x$ , in the interval $\left( {\frac{\pi }{2},\pi } \right)$ is
$3$
$4$
$2$
$1$
The sum of all values of $x$ in $[0,2 \pi]$, for which $\sin x+\sin 2 x+\sin 3 x+\sin 4 x=0$, is equal to:
If $\tan \theta = - \frac{1}{{\sqrt 3 }}$ and $\sin \theta = \frac{1}{2}$, $\cos \theta = - \frac{{\sqrt 3 }}{2}$, then the principal value of $\theta $ will be
If $2\sin \theta + \tan \theta = 0$, then the general values of $\theta $ are
Solve $2 \cos ^{2} x+3 \sin x=0$
If $\cos p\theta = \cos q\theta ,p \ne q$, then