Trigonometrical Equations
hard

The number of solutions of $sin \,3x\, = cos\, 2x$ , in the interval $\left( {\frac{\pi }{2},\pi } \right)$ is

A

$3$

B

$4$

C

$2$

D

$1$

(JEE MAIN-2018)

Solution

Given $\sin \,3x\, = \,\cos 2x$

$ \Rightarrow {\kern 1pt} \sin \,3x\, = \,\sin \,(\pi /2 – 2x)$

We now that $\sin A = \sin B$

$ \Rightarrow \,A\, = \,n\pi  + {( – )^n}B,$ where  $n$ is an integer

Using the above identity , we get

$3x = n\pi \, + \,{( – 1)^n}(\pi /2 – 2x)$

$n = 1,\,\,x = \pi  – \pi /2\, \Rightarrow \,x\, = \,\pi /2 \notin \,(\pi /2,\pi )$

$n = 2,\,\,x = \pi /2\, \notin \,\,(\pi /2,\pi )$

$n = 3,\,\,x = 5\pi /2\, \notin \,\,(\pi /2,\pi )$

$n = 4,\,\,x = 9\pi /10\, \notin \,\,(\pi /2,\pi )$

$n = 5,\,\,x = 9\pi /2 = \pi \, \notin \,\,(\pi /2,\pi )$

Now, for all negative integers $x$ would be negative.

For all value of $n > 5$ , solution $> \pi $

Hence the only possible solution is for $n=4$

and $x=9\pi /10$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.