The number of solutions of $sin \,3x\, = cos\, 2x$ , in the interval $\left( {\frac{\pi }{2},\pi } \right)$ is

  • [JEE MAIN 2018]
  • A

    $3$

  • B

    $4$

  • C

    $2$

  • D

    $1$

Similar Questions

If $\tan \theta + \tan 2\theta + \sqrt 3 \tan \theta \tan 2\theta = \sqrt 3 ,$ then

If $\cos \theta + \cos 2\theta + \cos 3\theta = 0$, then the general value of $\theta $ is

Number of solution $(s)$ of the equation ${\cos ^2}2x + {\cos ^2}\frac{{5x}}{4} = \cos 2x\,{\cos ^2}5x$ in $\left[ {0,\frac{\pi }{3}} \right]$ is

If $m$ and $n$ respectively are the numbers of positive and negative value of $\theta$ in the interval $[-\pi, \pi]$ that satisfy the equation $\cos 2 \theta \cos \frac{\theta}{2}=\cos 3 \theta \cos \frac{9 \theta}{2}$, then $mn$ is equal to $.............$.

  • [JEE MAIN 2023]

$\sin 6\theta + \sin 4\theta + \sin 2\theta = 0,$ then $\theta = $