If $(1 + \tan \theta )(1 + \tan \phi ) = 2$, then $\theta + \phi  =$ ....$^o$

  • A

    ${30}$

  • B

    ${45}$

  • C

    ${60}$

  • D

    ${75}$

Similar Questions

Let $\theta \in [0, 4\pi ]$ satisfy the equation $(sin\, \theta + 2) (sin\, \theta + 3) (sin\, \theta + 4) = 6$ . If the sum of all the values of $\theta $ is of the form $k\pi $, then the value of $k$ is

If $\cos 2\theta = (\sqrt 2 + 1)\,\,\left( {\cos \theta - \frac{1}{{\sqrt 2 }}} \right)$, then the value of $\theta $ is

Minimum value of the function $f(x) = \left| {\sin \,x + \cos \,x + \tan \,x + \cot \,x + \sec \,x + \ cosec\ x} \right|$ is equal to

The real roots of the equation $cos^7x\,  +\,  sin^4x\,  =\,  1$  in the interval $(-\pi, \pi)$ are

If ${\left( {\frac{{\sin \theta }}{{\sin \phi }}} \right)^2} = \frac{{\tan \theta }}{{\tan \phi }} = 3,$ then the value of $\theta $ and $\phi $ are