Trigonometrical Equations
hard

સમીકરણ $\cos \left(x+\frac{\pi}{3}\right) \cos \left(\frac{\pi}{3}-x\right)=\frac{1}{4} \cos ^{2} 2 x, x \in[-3 \pi$ $3 \pi]$ ના ઉકેલોની સંખ્યા ..... છે

A

$8$

B

$5$

C

$6$

D

$7$

(JEE MAIN-2022)

Solution

$\cos \left(\frac{\pi}{3}+x\right) \cos \left(\frac{\pi}{3}-x\right)=\frac{1}{4} \cos ^{2} 2 x$

$x \in[-3 \pi, 3 \pi]$

$4\left(\cos ^{2}\left(\frac{\pi}{3}\right)-\sin ^{2} x\right)=\cos ^{2} 2 x$

$4\left(\frac{1}{4}-\sin ^{2} x\right)=\cos ^{2} 2 x$

$1-4 \sin ^{2} x=\cos ^{2} 2 x$

$1-2(1-\cos 2 x)=\cos ^{2} 2 x$

let $\cos 2 x = t$

$-1+2 \cos 2 x=\cos ^{2} 2 x$

$t ^{2}-2 t +1=0$

$( t -1)^{2}=0$

$t =1 \quad \cos 2 x =1$

$2 x =2 n \pi$

$x = n \pi$

$n =-3,-2,-1,0,1,2,3$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.