The number of solutions of the equation $\sin x=$ $\cos ^{2} x$ in the interval $(0,10)$ is
$2$
$4$
$6$
$8$
$\sin ^{2} x+\sin x-1=0$
$\sin x=\frac{-1+\sqrt{5}}{2}=+v e$
Only $4$ roots
The equation $\sin x + \sin y + \sin z = – 3$ for $0 \le x \le 2\pi ,$ $0 \le y \le 2\pi ,$ $0 \le z \le 2\pi $, has
If $sin^2x + sinx \,cosx -6cos^2x = 0$ and $-\frac{\pi}{2} < x < 0$, then the value of $cos2x$, is
If $r\,\sin \theta = 3,r = 4(1 + \sin \theta ),\,\,0 \le \theta \le 2\pi ,$ then $\theta = $
The number of elements in the set $S=\left\{x \in R : 2 \cos \left(\frac{x^{2}+x}{6}\right)=4^{x}+4^{-x}\right\}$ is$…..$
The number of elements in the set $S=$ $\left\{\theta \in[-4 \pi, 4 \pi]: 3 \cos ^{2} 2 \theta+6 \cos 2 \theta-\right.$ $\left.10 \cos ^{2} \theta+5=0\right\}$ is
Confusing about what to choose? Our team will schedule a demo shortly.