Trigonometrical Equations
hard

સમીકરણ $\sin (9 x)+\sin (3 x)=0$ ના અંતરાલ $[0,2 \pi]$ માં ઉકેલની સંખ્યા મેળવો.

A

$7$

B

$13$

C

$19$

D

$25$

(KVPY-2019)

Solution

(b)

Given trigonometric equation is

$\sin (9 x)+\sin (3 x)=0$

$\Rightarrow \quad 2 \sin 6 x \cos 3 x=0$

$\therefore \quad$ either $\sin 6 x=0$

or $\quad \cos 3 x=0$

for $x \in[0,2 \pi]$

$\sin 6 x=0$

$\Rightarrow \quad x=0, \frac{\pi}{6}, \frac{\pi}{3}, \frac{\pi}{2}, \frac{2 \pi}{3}, \frac{5 \pi}{6}$,

and $3 x=0$

$\Rightarrow \quad x=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{3 \pi}{2}, \frac{11 \pi}{6}$

So, number of solution of given equation is $13$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.