સમીકરણ
$\left| {\,\begin{array}{*{20}{c}}{1 + {{\sin }^2}\theta }&{{{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{1 + {{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{{{\cos }^2}\theta }&{1 + 4\sin 4\theta }\end{array}\,} \right| = 0$
નું સમાધાન કરે તેવી $\theta $ ની $0$ અને $\pi /2$ ની વચ્ચેની કિમત મેળવો.
$\frac{{7\pi }}{{24}}$ અથવા $\frac{{11\pi }}{{24}}$
$\frac{{5\pi }}{{24}}$
$\frac{\pi }{{24}}$
એકપણ નહિ.
આપેલ સમીકરણના મુખ્ય અને વ્યાપક ઉકેલ શોધો : $\cot x=-\sqrt{3}$
જો $\cos p\theta = \cos q\theta ,p \ne q$, તો
સમીકરણ $cos^7x\, +\, sin^4x\, =\, 1$ ના $(-\pi, \pi)$ માં ઉકેલો મેળવો
અંતરાલ $[0,2 \pi]$ માં સમીકરણ $x +2 \tan x =\frac{\pi}{2}$ ના ઉકેલની સંખ્યા મેળવો.
સમીકરણ $\sec \theta \,\, + \,\,\tan \theta \, = \,\sqrt 3 \,,\,0\,\, \leqslant \,\,\theta \,\, \leqslant \,\,2\pi$ ના ભિન્ન કેટલા ઉકેલો મળે છે ?