Trigonometrical Equations
normal

સમીકરણ

$\left| {\,\begin{array}{*{20}{c}}{1 + {{\sin }^2}\theta }&{{{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{1 + {{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{{{\cos }^2}\theta }&{1 + 4\sin 4\theta }\end{array}\,} \right| = 0$

નું સમાધાન કરે તેવી $\theta $ ની $0$ અને $\pi /2$ ની વચ્ચેની કિમત મેળવો.

A

$\frac{{7\pi }}{{24}}$ અથવા $\frac{{11\pi }}{{24}}$

B

$\frac{{5\pi }}{{24}}$

C

$\frac{\pi }{{24}}$

D

એકપણ નહિ.

(IIT-1988)

Solution

(a) The given determinant

(Applying ${R_1} \to {R_1} – {R_3}$ and ${R_2} \to {R_2} – {R_3}$) reduces to 

$\left| {\,\begin{array}{*{20}{c}}1&0&{ – 1}\\0&1&{ – 1}\\{{{\sin }^2}\theta }&{{{\cos }^2}\theta }&{1 + 4\sin 4\theta }\end{array}\,} \right|\, = 0$

$ \Rightarrow $ $1 + 4\sin 4\theta + {\cos ^2}\theta + {\sin ^2}\theta = 0$

(By expanding along ${R_1})$

==> $4\sin 4\theta = – 2$ ==> $\sin 4\theta = \frac{{ – 1}}{2}$

==> $4\theta = \frac{{7\pi }}{6}$ or $\frac{{11\pi }}{6}$, ($0 < 4\theta < 2\pi $)

Since, $0 < \theta < \frac{\pi }{2}$

==> $0 < 4\theta < 2\pi $ 

==> $\theta = \frac{{7\pi }}{{24}},\,\,\frac{{11\pi }}{{24}}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.