Trigonometrical Equations
hard

જો $m$ અને $n$ એ સમીકરણ $\cos 2 \theta \cos \frac{\theta}{2}=\cos 3 \theta \cos \frac{9 \theta}{2}$ નું સમાધાન કરતી અંતરાલ $[-\pi, \pi]$ માં ની $\theta$ ની અનુક્રમે ધન અને ઋણ કિંમતો હોય, તો $m n=...........$

A

$25$

B

$24$

C

$23$

D

$22$

(JEE MAIN-2023)

Solution

$\cos 2 \theta \cdot \cos \frac{\theta}{2}=\cos 3 \theta \cdot \cos \frac{9 \theta}{2}$

$\Rightarrow 2 \cos 2 \theta \cdot \cos \frac{\theta}{2}=2 \cos \frac{9 \theta}{2} \cdot \cos 3 \theta$

$\Rightarrow \cos \frac{5 \theta}{2}+\cos \frac{3 \theta}{2}=\cos \frac{15 \theta}{2}+\cos \frac{3 \theta}{2}$

$\Rightarrow \cos \frac{15 \theta}{2}=\cos \frac{5 \theta}{2}$

$\Rightarrow \frac{15 \theta}{2}=2 k \pi \pm \frac{5 \theta}{2}$

$5 \theta=2 k \pi \text { or } 10 \theta=2 k \pi$

$\theta=\frac{2 k \pi}{5}$

$\therefore \theta=\left\{-\pi, \frac{-4 \pi}{5}, \frac{-3 \pi}{5}, \frac{-2 \pi}{5}, \frac{-\pi}{5}, 0, \frac{\pi}{5}, \frac{2 \pi}{5}, \frac{3 \pi}{5}, \frac{4 \pi}{5}, \pi\right\}$

$m =5, n =5$

$\therefore m n=25$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.