The number of values of $r \in\{p, q, \sim p , \sim q \}$ for which $((p \wedge q) \Rightarrow(r \vee q)) \wedge((p \wedge r) \Rightarrow q)$ is a tautology, is:
$3$
$2$
$1$
$4$
The contrapositive of the statement "If you will work, you will earn money" is ..... .
Which of the following statements is a tautology?
Negation of $p \wedge( q \wedge \sim( p \wedge q ))$ is
The Boolean expression $ \sim \left( {p \Rightarrow \left( { \sim q} \right)} \right)$ is equivalent to
If statement $(p \rightarrow q) \rightarrow (q \rightarrow r)$ is false, then truth values of statements $p,q,r$ respectively, can be-