Mathematical Reasoning
hard

The number of values of $r \in\{p, q, \sim p , \sim q \}$ for which $((p \wedge q) \Rightarrow(r \vee q)) \wedge((p \wedge r) \Rightarrow q)$ is a tautology, is:

A

$3$

B

$2$

C

$1$

D

$4$

(JEE MAIN-2023)

Solution

$(( p \wedge q ) \Rightarrow( r \vee q )) \wedge(( p \wedge r ) \Rightarrow q )$

We know, $p \Rightarrow q$ is equivalent to

$-p \vee q$

$(-(p \wedge q) \vee(r \vee q)) \wedge(-(p \wedge r)) \vee q))$

$\Rightarrow(-p \vee-q \vee r \vee q) \wedge(-p \vee-r \vee q)$

$\Rightarrow(-p \vee r \vee t) \wedge(-p \vee-r \vee q)$

$\Rightarrow(t) \wedge(-p \vee-r \vee q)$

For this to be tautology, ( $-p \vee-r \vee q)$ must be always true which follows for $r=-p$ or $r=q$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.