The statement $( p \wedge q ) \Rightarrow( p \wedge r )$ is equivalent to.
$q \Rightarrow(p \wedge r)$
$p \Rightarrow( p \wedge r )$
$( p \wedge r ) \Rightarrow( p \wedge q )$
$(p \wedge q) \Rightarrow r$
Which of the following is not logically equivalent to the proposition : “A real number is either rational or irrational”.
Statement$-I :$ $\sim (p\leftrightarrow q)$ is equivalent to $(p\wedge \sim q)\vee \sim (p\vee \sim q) .$
Statement$-II :$ $p\rightarrow (p\rightarrow q)$ is a tautology.
The proposition $p \Rightarrow \;\sim (p\; \wedge \sim \,q)$ is
Which of the following statement is true
Negation of “Ram is in Class $X$ or Rashmi is in Class $XII$” is