- Home
- Standard 11
- Mathematics
Trigonometrical Equations
easy
The number of values of $\theta $ in $[0, 2\pi]$ satisfying the equation $2{\sin ^2}\theta = 4 + 3$$\cos \theta $ are
A
$0$
B
$1$
C
$2$
D
$3$
Solution
(a) $2 – 2{\cos ^2}\theta = 4 + 3\cos \theta $
$ \Rightarrow $ $2{\cos ^2}\theta + 3\cos \theta + 2 = 0$
$ \Rightarrow $ $\cos \theta = \frac{{ – 3 \pm \sqrt {9 – 16} }}{4}$,
which is imaginary, hence no solution.
Standard 11
Mathematics