The number of values of $\theta $ in $[0, 2\pi]$ satisfying the equation $2{\sin ^2}\theta = 4 + 3$$\cos \theta $ are

  • A

    $0$

  • B

    $1$

  • C

    $2$

  • D

    $3$

Similar Questions

If $cosx + secx =\, -2$, then for a $+ve$ integer $n$, $cos^n x + sec^n x$ is

The solution of the equation $\left| {\,\begin{array}{*{20}{c}}{\cos \theta }&{\sin \theta }&{\cos \theta }\\{ - \sin \theta }&{\cos \theta }&{\sin \theta }\\{ - \cos \theta }&{ - \sin \theta }&{\cos \theta }\end{array}\,} \right| = 0$, is

The set of angles btween $0$ & $2\pi $ satisfying the equation $4\, cos^2 \, \theta - 2 \sqrt 2 \, cos \,\theta - 1 = 0$ is

If the equation $2\ {\sin ^2}x + \frac{{\sin 2x}}{2} = k$ , has atleast one real solution, then the sum of all integral values of $k$ is

Find the general solution of the equation $\sec ^{2} 2 x=1-\tan 2 x$